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A di�erential equation for approximate wall distance
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SUMMARY

A partial di�erential equation to compute the distance from a surface is derived and solved numerically.
The bene�t of such a formulation especially in combination with turbulence models is shown. The
details of the formulation as well as several examples demonstrating the in�uence of its parameters are
presented. The proposed formulation has computational advantages and can be favourably incorporated
into one- and two-equation turbulence models like e.g. the Spalart–Allmaras, the Secundov or Menter’s
SST model. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In some �elds of CFD such as turbulence modelling and grid generation the normal distance
to the nearest surface, usually a rigid wall, is required. It is clear that such a calculation
can be accurately carried out by calculating the minimum distance between discrete points
on the surfaces and the points within the domain of integration. If the grid lines are not
orthogonal to the surface, which is the case in unstructured meshes, more time consuming
geometrical techniques must be used to compute the exact normal vector on the surface that
provides a position to interpolate the normal distance. Such calculations require operations in
the order O(M · N ), where M and N represent the number of grid points on the surface and
on the whole domain, respectively. This may be regarded as a cheap calculation even though
the operations involved include point operations and branches if M is at least one order of
magnitude smaller than N , which is usually the case. Considering on the other hand the fact
that these operations prevent the use of vector acceleration and require massive communication
between the domains on parallel architectures to exchange all grid co-ordinates, such a trivial
computation turns out to be complicated and computationally expensive, in particular for large
problems.
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Figure 1. Example of equal distances.

Considering the formulations of current turbulence models like the Baldwin and Lomax [1],
Baldwin–Barth [2], Spalart–Allmaras [3], Secundov’s �t92 [4] and Menter’s SST [5] model it
is apparent, that the near-wall turbulence is often considered in the formulations by explicitly
enforcing a dependence of the production or destruction terms, e.g. wall damping terms, on
the normal distance d to the nearest wall or on the normalized distance y+= u�d=�.
Since all these models include empirical constants the model has to be tuned for the near

wall turbulence, which is usually done for the zero pressure gradient boundary layer or slightly
curved surfaces. This procedure is not exact for all kinds of geometries where strong curvature
is expected. The question arises whether a di�erent formulation of the distance can be found,
that can take curvature e�ects at strong curved surfaces as well as sharp edges and corners into
account while preserving the results for the �at plate. This is motivated by the idea that an
exact computation of the distance leads to the same result of the distance d1 =d2 =d3 for the
convex=concave and plane surfaces shown in Figure 1. Even though the points P1; P2; P3 have
the same wall distance they possess a di�erent near-wall impact in many turbulence models.
Hence, a physically more relevant choice would be d1¡d3¡d2 to express the increase or
decrease in wall in�uence at convex or concave curved surfaces. The same is valid for sharp
corners or edges, with additionally smoothing the undesired crisp distribution of the exact
distance.
Those two drawbacks, parallelization disadvantages and non-physically based in�uence, can

be remedied by replacing the regular normal wall distance d by a suitable distribution D. We
seek a new distance function D that can be numerically determined by methods similar to
those used for the numerical �ow solutions. Additionally, D should be adjustable for a better
behaviour of turbulence models that require this distance concept at curved surfaces and
corners.
A proposal of such a formulation can be found in References [6; 7] which was derived from

a modi�ed Poisson equation. Several arguments and weighting factors have to be evaluated
to identify the nearest surface and locate the nearest corner and gap orientation. This equation
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was used in conjunction with a variety of turbulence models in isothermal �ows around
electronic components. Unfortunately, details about the derivation of this equation, boundary
conditions as well as the solution procedure and the ability to control the deviation from the
exact distance, e.g. smoothing at sharp edges, were not thoroughly discussed.
Another coupling of a newly formulated distance equation with the Spalart–Allmaras turbu-

lence model was introduced in References [8; 9] leading to qualitatively good results in two-
and three-dimensional �ows. In this paper a detailed presentation of this proposed distance
function will be given. A partial di�erential equation is derived in the next section followed
by recommendations for the numerical solution and suitable initial and boundary conditions.
Finally, examples are discussed to point out the ability of the equation to meet the desired
requirements and to present reference solutions to allow the tuning wished by researchers
in the �eld of turbulence modelling. The appendix summarizes all relevant equations and is
provided for implementation purposes.

2. DERIVATION OF THE EQUATION

The distance function D for a three-dimensional space is derived from the requirement that
the gradient of such a function has norm 1 [10]

|grad(D)|= |(Dx;Dy;Dz)T|=1 (1)

⇒ (Dx)2 + (Dy)2 + (Dz)2 = 1 (2)

which is actually the requirement that the function D has a linear solution. The second
condition is that the gradient of D should be normal to the surface. This is automatically
ful�lled by enforcing the Dirichlet boundary condition on the surface

Dwall =D0 = const: (3)

If the gradient had a non-orthogonal orientation, a tangential component on the surface would
exist. Such a component would contradict either the constant boundary condition or the con-
stant norm of the gradient. The validity of the above formulation can be analytically veri�ed
for trivial geometries, say, a plane or a sphere.
Note, however, that the iterative numerical solution of the distance equation (2) has some

drawbacks:

• The initialization of the distribution at the beginning of the calculation by a large constant
value will lead to a non-zero residual, even when all boundary conditions are turned o�.
Only a linear distribution in one direction ful�ls the equation. Compared with an initialized
parallel �ow it seems favourable to have an initialization of the distance equation that
indicates convergence either globally or at least locally if there is no wall in the domain
or it is far away, respectively.

• The information about the existence of the surfaces must propagate through the whole
computational domain to attain the linear distribution. This can be avoided, since the de-
pendence on the distance d in almost all cases is only important in the vicinity of the
surfaces involved. That is, there is no need to extend this requirement globally.
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• If the integration domain is not bounded by walls there is no suitable distribution of the
distance function possible except for the in�nite value D→∞, which should be avoided
numerically.

Therefore, Equation (2) is reformulated to overcome these di�culties by substituting the
function D by its inverse G=1=D

(Gx)2 + (Gy)2 + (Gz)2 =G4

⇒ |grad(G)|2 =G4 (4)

Ginit = 0:0 (5)

Gwall = 1=D0 =G0 (6)

To avoid in�nite values D0 should not be equal to zero in the boundary condition (6) if
it is evaluated explicitly at the boundary. This issue will be addressed below. The initial
distribution in the interior domain is given by Equation (5), which represents a trivial solution
of Equation (4). The term |grad(G)|2 is rearranged using the identity

(G · Gx)x=(Gx)2 + G · Gxx
for each component of the term to attain an elliptical formulation that is easier to solve
numerically

(G · Gx)x + (G · Gy)y + (G · Gz)z − G · (Gxx + Gyy + Gzz)− G4 = 0 (7)

where (Gxx +Gyy +Gzz) represents a Laplacian operator of G. To have the desired possibility
of tuning the distance function near edges and corners an elliptic term � ·G(Gxx+Gyy+Gzz) is
added. Here, the quantity � must be positive since the introduced term resembles a di�usion
term, which must be mathematically and physically positive (G is also always positive). The
impact of this parameter � on the solution will be thoroughly discussed in the following
sections. The source term G4 is multiplied by the factor � to compensate for the newly added
elliptic term. The �nal equation reads

(G · Gx)x + (G · Gy)y + (G · Gz)z + (� − 1) · G · (Gxx + Gyy + Gzz)− � · G4 = 0 (8)

where �¿0 extends the elliptic character of the equation and, as we will show below, de-
termines the smoothing of the distance function at the corners. Since the introduction of �
changes the inverse linear behaviour of the distance function G the value of � is chosen to
account for the newly introduced additional smoothing and compute the exact solution for the
plane. In doing so no changes to the formulations of the turbulence models using the distance
concept are necessary. A plane in three dimensions has a constant normal vector n0 that can
be de�ned by two angles � and �. Using the exact inverse distance function G

G=
1

x cos(�) cos(�) + y cos(�) sin(�) + z sin(�) +D0
(9)

in Equation (8) yields for �

�=(1 + 2 · �) (10)
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Inserting this linear relation between � and � into Equation (8) leads to no deviation for
the plane and a deviation of O(�=(r2 +

√
r · (D0 + r0)3)) between the exact and the proposed

inverse distance for a sphere, where r is the distance from the sphere centre and r0 the radius
of the sphere.

3. NUMERICAL SOLUTION

In this paper, the numerical algorithm to solve the proposed equation is presented in a
structured multi-block framework. Other possibilities of the discretization using higher-order
schemes as well as approximations on unstructured grids will be discussed elsewhere. Due to
the elliptic character the terms of the equations are discretized using central di�erences based
on 3 point stencils in each direction. Details of the discretization are given in the appendix.

3.1. Boundary conditions

The initial distribution Ginit = 0 resembles the free stream solution. It is an exact solution of
the equation in the interior and yields also a good approximation at the far �eld boundaries.
Since the quantity G grows inversely with the distance, strong gradients are expected only in
the near-wall region, which is exactly where the distance calculation is needed in the usual
turbulence models.
The boundary condition at the wall Gwall =G0 can be theoretically chosen according to the

requirements of the turbulence model. The �t92 model of Secundov [4] for example reduces the
distance to the nearest wall d by the quantity ks (de� =dw+0:01ks) to account for wall rough-
ness. A modi�ed Spalart–Allmaras model for rough wall boundary layers is proposed in Ref-
erence [11] which also shifts the distance d by the value R=0:9(�=u�)[

√
k+s −k+s exp(−k+s =6)]

where k+s = ksu�=� represents the normalized roughness. It should be noted that the eddy vis-
cosity is also enlarged at the rough wall. Therefore, the obtained e�ect can be interpreted as
a shift of the near-wall velocity pro�le towards the wall of the order O(y+) leading to an
increase of the skin friction.
If the integration domain of a turbulent �ow calculation contains many objects of di�erent

sizes, e.g. a very thin wire in the turbulent channel �ow within the boundary layer, there will
be insigni�cant in�uence of the thin wire on the production or dissipation of the turbulent
viscosity at the channel wall and therefore on the skin friction distribution. Note, that this is
not to be confused with a tripping wire used to enforce transition. Depending on the in�uence
of the object a suitable value of G0, e.g. based on the reference size, can be chosen. This
feature will be addressed in the examples below. Practically on the other hand a choice of
G0 ≈ 1:0=xref seems to be appropriate since this would limit the range of the non-dimensional
value of G between 0 and 1 thereby avoiding large values near the wall, where the exact
inverse distance 1=d reaches in�nity at the wall. Since the value of G goes directly into the
source term �G4 a strong gradient near the wall will also be avoided by the proposed o�set
G0 which will not only lead to a better numerical stability but also enables the use of coarse
grids even near the wall.
The numerical boundary condition at the far �eld boundaries can be formulated accord-

ing to the assumption that G or @nG approximately vanishes. These simple boundary con-
ditions, however, have physical limitations. For this reason we introduce a more accurate
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formulation

rb = rijk =(xb yb zb)T (11)

rin = ri±0=1j±0=1k±0=1 = (xin yin zin)T (12)

�r = |rb − rin| (13)

Gb =
Gin

1 + Gin ·�r (14)

where rin represents the �rst inner point from the far �eld boundary and rb is the location
of the boundary. This boundary condition shifts the exact calculation of the inverse distance
from the interior of the integration domain onto the boundary. The only requirement is that
the �rst inner point is in the direction of the gradient of G. To avoid calculating the exact
direction of the gradient of G at the boundary a multi-dimensional linear extrapolation can be
used for the distance distribution. The exact description is given in the appendix.

3.2. Integration scheme

The iterative solution process can be explicitly advanced in an arti�cial time with cr being a
relaxation factor

Gt = cr · [(G · Gx)x + (G · Gy)y + (G · Gz)z + (� − 1) · G · (Gxx + Gyy + Gzz)− � · G4] (15)

Note that the equation loses its dimensional consistency unless cr is appropriately chosen. The
form of Equation (15) resembles a transport equation that can be implemented into existing
numerical algorithms as an extension of the turbulence models.
However, numerical stability investigations show that an explicit integration has strong lim-

itations on the time steps due to non-linearities that cannot be analysed analytically. Therefore,
a more superior Newton type implicit calculation was carried out. The scheme is described
here for the one-dimensional case

R(n) = (G · Gx)x + (� − 1) · G · (Gxx)− � · G4 (16)

G(n+1) =G(n) − crJ(n)−1R(n) (17)

The Jacobian Jij = @Ri=@Gj is given explicitly in the appendix. The matrix J has a tridiagonal
structure for structured grids. It can be inverted using e.g. a tridiagonal Gaussian elimination of
order O(N ). It was found that this integration scheme is highly e�cient and robust for �’ 0:2
using the numerical boundary conditions given in Equations (5), (6) and (14). Two special
cases for � can be derived for �=1 and �→∞. The Laplacian operator in Equation (8)
disappears for �=1. The limit �→∞ reduces Equation (15) to a simple equation

�→∞ : Gxx + Gyy + Gzz − 2G3 = 0 (18)

At values � less than 0:2 numerical instabilities of the scheme occur. If the relaxation factor
is determined using cr ≈ 1:0=max(�xi=�xi−1) a stable and e�cient behaviour for stretching
factors max(�xi=�xi−1) up to 5:0 is achieved. For the case of the �at plate O(10) iterations
were necessary to obtain a converged solution.
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The multi-dimensional problem is solved by splitting the Jacobian J into a diagonally
dominant part and the o�-diagonal part where the diagonal part includes the contributions of
all directions. That is

J=Jx+diag +Jy−diag +Jz−diag (19)

means that Jy−diag and Jz−diag have zero diagonals.
Following Equation (17) the Newton iteration can be performed by the approximation

�G(n+1) = −cr(J(n)
x+diag)

−1[Rn +J
(n)
y−diag +J

(n)
z−diag)�G(n)] (20)

The advantage of this splitting is that all the sub Jacobians are tridiagonal, if they are re-
ordered conveniently, such that the inversion and the multiplication stay of O(N ). Numerical
experience indicates that the terms (Jy−diag +Jz−diag)�G(n) can be neglected in favour of the
dominant term Rn, which simpli�es the method even further.
To avoid propagation of information in one preferred direction all diagonally dominant

Jacobians are considered and averaged

R(n)
x = (J(n)

x+diag)
−1R(n) (21)

R(n)
y = (J(n)

y+diag)
−1R(n) (22)

R(n)
z = (J(n)

z+diag)
−1R(n) (23)

�G(n+1) =−cr=3(R(n)
x +R(n)

y +R(n)
z ) (24)

Of course, other schemes for the solution of the equation using other iterative methods like
ILU, CGSTAB or GMRES and combinations with multigrid acceleration are possible.

4. EXAMPLES

The equation just derived is solved numerically for various one- and two-dimensional cases
that explain the in�uence of the free parameters on the distance calculation and present relevant
examples of edges and curved surfaces including a realistic 3-element airfoil con�guration. The
one-dimensional examples are documented in detail and approximations of relevant functions
are given to allow further tuning of the parameters in conjunction with turbulence models.
Finally, three-dimensional calculations of di�erent block sizes and numbers are presented

showing the bene�t of the proposed numerical solution and yielding theoretical aspects of
expected computational times.

4.1. One-dimensional case

The numerical solution of the one-dimensional equation with one end de�ned as a wall and
the other as a far �eld resembling a �at plate meets the exact distance for all � chosen, which
is one of the requirements of the derived equation.
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Figure 2. Exact and calculated distance for di�erent �.
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Figure 3. Approximation of the deviation �d for di�erent �.

When the wall boundary condition (G0 = 1:0; xref = 1:0) is enforced at both ends, which
resembles a channel, the maximum deviation �d from the exact distance occurs in the middle
at x=xr = 1 as seen in Figure 2.
The desired smoothing is controlled by the value of �, where a larger value means a

stronger smoothing. The di�erence �d=dexact−dcalculated computed for di�erent values of � is
shown in Figure 3. A logarithmic growth of �d is evidenced having a limit of the deviation
for �→∞. The curve can be approximated by the function

f(�)approx:= a · tanh(b · ln(1:0 + c · �)) (25)
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with

a= lim
�→∞ �d ≈ 0:459; b ≈ 0:50; c ≈ 6:3 (26)

It is worth noting that the value of the wall boundary condition Gwall =G0 = 1:0=xref in�uences
the smoothing, too. Since the scalar Equation (8) has only one dimension of the length, the
dimensional form of the equation is equivalent to the non-dimensional form, if x and G are
non-dimensionalized with the same reference length xref . The only situation where the value
of xref is relevant is the de�nition of the initial and boundary conditions Ginit and Gwall. In the
case of the one-sided wall, that is similar to the �at plate in two-dimensions, this numerical
value does not play a role, since the solution is the exact distance for all � and G0 chosen.
For the case of the two-sided wall, simulating a channel in two-dimensions, the exact distance
is not ful�lled and there is a maximum smoothing midway between the walls. Figure 4 shows
the distributions at various G0 values for �=1:0. A small G0 means a greater distance from
the wall and as such a stronger deviation from the inverse linear behaviour is observed. It is
apparent, that the value at the wall has a profound in�uence on the calculated inverse distance
by controlling the region of the inverse linear behaviour. The di�erence �d=dexact−dcalculated
calculated for di�erent values of G0 is presented in Figure 5. There is also a logarithmic
behaviour of �d depending on G0 and a limit of the deviation for G0→ 0. The curve can be
approximated by the function

G̃0 =G0 · xref (27)

f(G̃0)approx = 1 + a · (tanh(b · ln(c · G̃0))− 1) (28)

with
a ≈ 0:41; b ≈−0:61; c ≈ 2:86 (29)

lim
G̃0→0

f(G̃0)approx:=1:0 (30)
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Figure 5. Approximation of the deviation �d for di�erent G0.

4.2. Two-dimensional case

4.2.1. Convex=concave corner. In the following example 90◦ convex and concave corners are
investigated, respectively. The calculation is conducted for a range of the parameters � and
G0 to demonstrate their in�uence on the solution. The results are compiled in Figure 6.
As in the one-dimensional case a small value of � and a large value of G̃0 yields a better

approximation of the exact distance. The most important feature is the smoothing at the corner
from both sides, leading to a smaller distance on the concave side and a greater distance on the
convex side. The contours do not represent the exact distance. A small spacing between the
contours of the distance in Figure 6 like that on the convex side represents a greater calculated
distance than the exact distance and a greater spacing as on the concave side represents a
smaller distance. In other words, clustered isolines evidence a stronger and separated contours
a weaker increase than the exact distance. Note the behaviour at the boundaries using the
proposed boundary condition for the case of G̃0 = 10:0. The far �eld boundary condition
(14) expects an inverse linear behaviour of G. This is not exactly ful�lled at all boundaries
especially in the smoothed interior of the concave corner. Nevertheless, the boundary condition
is still performing well and is very e�ective in cases where the orthogonality of the grid lines
is not satis�ed at the boundary.

4.2.2. Ellipse. A smoothly curved surface similar to that of an airfoil is represented by an
ellipse where the outer and inner part can be investigated. The calculated distance for �=1:0
and G̃0 = 1:0 is compared with the exact distance in Figure 7. The same behaviour is encoun-
tered as in the above mentioned examples for the concave and convex corner. The investigation
of the direct vicinity of the surface, that is presented in Figure 8 for a cut through the axis of
the ellipse, shows that the curvature and smoothing e�ect is observed up to the surface and
is stronger on the inner part. Regarding on the other hand distances close to the surface, e.g.
in a region of a boundary layer of a high Reynolds number �ow in the O(y+), the deviations
are negligible.
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Figure 6. Calculated distance at a convex/concave corner for di�erent values of � and G̃0 =G0 · xref .

4.2.3. Cylinder in channel. A variation of the wall boundary condition G0 on di�erent objects
within the same integration domain is presented in the following example. A cylinder is given
di�erent values of G0 whereas the value on the channel wall is kept constant G̃0 = 1:0. As
seen in Figure 9 the object with the higher value of G̃0 dominates the calculation of the
distance. This parameter is therefore not merely determined by the reference length of the
computation for non-dimensional purposes but allows to control various in�uences of di�erent
walls if desired.

4.2.4. Three-element airfoil. The example presents the behaviour of the proposed distance
equation for a three-element airfoil BAC 3-11 [12]. The structured grid shown in Figure 10
was successfully used in former calculations [9]. The exact distance based on the calcula-
tion of the smallest distance between the grid points within the integration domain and the
boundary points on the wall is presented in Figure 11. Note the relatively sharp distribution
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Figure 7. Exact and calculated distance for the ellipse.
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Figure 8. Deviation of calculated and exact distance at the surface of the ellipse.

in the vicinity of the slat and �ap, that results in perturbations in the numerical computation
of the turbulent �ow. The distance calculation based on the proposed di�erential equation
in Figure 12 shows a comparatively smooth distribution. The computation of this complex
topology needed less than 200 iterations to achieve a reduction of 5 orders of magnitude for
the residual.

4.3. Three-dimensional case

4.3.1. Single block. To discuss the computational time needed for the proposed calculation
juxtaposed to the exact determination of distance the simple cube is considered. It consists
of N grid points and has M ∼N 2=3 points on the boundary. Any exact calculation would
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Figure 9. Calculated distance of channel and object with di�erent values of G0.

need a number of operations of order O(N 5=3). A computation based on the partial di�erential
equation is of order O(N · it), where it represents the number of iterations needed to achieve a
converged solution. Within one iteration O(N ) operations are required for the inversion of the
tridiagonal matrix. Figure 13 presents the computational time needed for the exact calculation
and the computational time required for the convergence of the numerical method, which is
de�ned by a drop of O(7) magnitudes of the residual. The numerical scheme shows an increase
in the number of iterations ranging from it =19 for N =729 to it = 63 for N =7× 105. If it
is considered to be proportional to Na then for large N the quantity a is smaller than 1

3 .

4.3.2. Multi block. When the computational domain is divided into several subdomains new
boundaries are introduced having B grid points. If the total number of grid points N is equally
divided into K subdomains then B can be approximated by B ∼ (N=K)2=3. The total time for
the calculations consists of the communication time Tcomm needed to exchange values between

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:743–762
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Figure 10. Grid of three-element airfoil consisting of 45 000 grid points and 19 blocks.

Figure 11. Exact distance.

Figure 12. Calculated distance with �=1:0 and G0 = 1:0.
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Figure 13. Computational time normalized by the time required for the
smallest grid with 9× 9× 9 grid points.

the subdomains and the computational time Tcalc within each subdomain. Considering a parallel
machine, where Tcomm is not negligible compared to Tcalc and each subdomain is mapped to
one CPU, the following approximations can be derived:

• exact distance
Tcomm∼K ·M ∼ K · N 2=3 Tcalc∼(N=K) ·M ∼ N 5=3=K (31)

• equation
Tcomm ∼ it · B ∼ it · (N=K)2=3 Tcalc ∼ it · N=K (32)

The number of iterations it needed for convergence are higher in the multi-block case com-
pared to the one block case. The iterations range from it =41 for K =8 to it = 87 for K =125.
Approximating this behaviour by it∼Ka leads to a ≈ 0:3. It is clear from Equations (31) and
(32) that both high mesh resolution number or high subdivision favour the use of the proposed
equation, since Tcomm and Tcalc have a lower scaling for the numerical solution of the di�er-
ential equation. Figure 14 shows an example of the scaling with growing block and processor
number, respectively. The run was done on a PC cluster with 16 nodes and two processors per
node. The size of the problem N=K was equal for each processor. The exchange between the
subdomains is optimised in both the exact calculation and the numerical solution to minimize
communication and achieve load balancing.

5. CONCLUSION

A partial di�erential equation for the distance function to a surface is derived. This new
formulation promises an enhancement of turbulence models at strong curved surfaces. Ad-
vantages over the direct calculation of the distance can be achieved on parallel computers
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Figure 14. Computational time normalized by the time required for one block.

in terms of computational and communication times. Details about the numerical solution of
the equation are presented and the method is applied to one- and two-dimensional examples.
The impact of the two parameters � and G0, that control the smoothing behaviour of the
equation, is thoroughly investigated. The solution yields the exact normal distance in the case
of the �at plate independent of the values chosen for these parameters. In the case of curved
surfaces like corners or ellipses a smoothing can be enlarged by choosing a greater � and/or a
smaller value of G0. Furthermore they o�er the possibility to control the near-wall behaviour.
By assigning di�erent values of G0 to di�erent objects in the computational domain a further
tuning of the opposing wall in�uence can be achieved. Further discussion of the coupling
of the proposed equation and a turbulence model including the choice of the parameters is
underway.

APPENDIX A

Equation

The proposed equation for the inverse distance G reads

(G · Gx)x + (G · Gy)y + (G · Gz)z + (� − 1) · G · (Gxx + Gyy + Gzz)− � · G4 = 0 (A.1)

with

�’ 0:2 (A.2)

� = (1 + 2�) (A.3)

d=
1
G

− 1
G0

(A.4)
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Three special cases exist for two values of �

• �=0:0 (exact distance)

(G · Gx)x + (G · Gy)y + (G · Gz)z − G · (Gxx + Gyy + Gzz
)− G4 = 0 (A.5)

• �=1:0

(G · Gx)x + (G · Gy)y + (G · Gz)z − � · G4 = 0 (A.6)

• �→∞

Gxx + Gyy + Gzz − 2G3 = 0 (A.7)

Initial condition

Ginit = [0:0 : : : 0:001] · 1=xref (A.8)

If for numerical reasons the value of 0 cannot be chosen to initialize the distribution then a
very small value will be a good approximation for the free stream condition.

Boundary conditions

Wall

Gwall =G0 ≈ 1 · 1=xref (A.9)

Other values of G0 depending on the type of the wall are possible.

Far Field=in�ow-out�ow. The distance D is approximated at the boundary according to the
following linear equation

D∗=
1

G+ 1:0
(A.10)

D∗= a0 + a1x + a2y + a3z (A.11)

where the coe�cients a0; a1; a2 and a3 are determined through the inversion of the 4×4 matrix



n �xi �yi �zi

�xi �x2i �xiyi �xizi

�yi �xiyi �y2i �yizi

�zi �xizi �yizi �z2i







a0

a1

a2

a3



=




�Di

�xiDi

�yiDi

�ziDi




(A.12)
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where the sum � is carried out over n¿3 points from the interior of the integration domain.
The approximating function (A.11) can be used to determine the value

Gb = 1=D∗
b − 1:0 (A.13)

according to the grid co-ordinates of the boundary points. The value 1:0 is added to avoid
division by zero (D=1=G) at the beginning of the calculation. This type of boundary con-
dition is also suitable for unstructured grids with the only limitation that the co-ordinates
of the chosen approximating n points are not linearly dependent (e.g. do not lie on
one line).

Discretization

The discretization is given for one direction (other directions are similar since the equation
contains no cross derivatives)

[(G · Gx)x]i = 1
xi+1 − xi−1 ·

(
G2i+1 − G2i
xi+1 − xi − G2i − G2i−1

xi − xi−1

)
(A.14)

[G · Gxx]i = 2Gi
xi+1 − xi−1 ·

(
Gi+1 − Gi
xi+1 − xi −

Gi − Gi−1
xi − xi−1

)
(A.15)

Jacobian for the Newton iteration

The complete Jacobian J is given for one direction at a constant time level n

J̃ii−1 =
2

xi − xi−1 (Gi−1 + (� − 1)Gi) (A.16)

J̃ii =−2Gi
(

1
x�+1 − xi +

1
xi − xi−1

)

+2(� − 1)
(
Gi+1 − 2Gi
xi+1 − xi +

Gi−1 − 2Gi
xi − xi−1

)

−4(xi+1 − xi−1) · �G3i (A.17)

J̃ii+1 =
2

xi+1 − xi (Gi+1 + (� − 1)Gi) (A.18)

Jij =
J̃ij

xi+1 − xi−1 (A.19)
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APPENDIX B:

NOMENCLATURE

B number of grid points on multiblock boundaries
K number of subdomains
M number of grid points on the boundary
N number of total grid points
T computational time
it number of iterations

a; b; c; parameters used
a0; a1; a2; a3 in approximations

d; y exact distance
�d di�erence between exact and calculated distance
ks wall roughness
cr relaxation factor
D distance function
� smoothing parameter
� factor of source term
n normal vector on surface
G inverse distance function

xr ; xref reference length
x; y; z cartesian co-ordinates
i; j; k discrete indices in x, y, z directions
�; � angles
r distance to the co-ordinate origin
r position vector

O( ) order
R residual
J Jacobian
@n normal derivative

( )+ sublayer scaled values
( )T transpose
( )−1 inverse of matrix
( )x;y; z �rst derivatives=component in the direction

( )xx;yy; zz second derivatives
( )wall wall (surface) value
( )b boundary value
( )in �rst inner value
( )ijk value at node i; j; k
( )0 constant values
( )ref reference value
( )exact exact value

( )calculated calculated value
( )e� e�ective value
( )init value used for initialization
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( )diag diagonal component of matrix
( )approx: approximated value or function
( )calc calculation time
( )comm communication time
( )(n) timelevel=iteration index n

˜( ) non-dimensional value
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